HYDRATION ANALYSIS BASED CALCULATION OF SOLUTE ACTIVITY COEFFICIENTS IN TERNARY SATURATED SOLUTIONS

Jitka EYSSELTOVA

Department of Inorganic Chemistry, Charles University, 128 40 Prague 2, The Czech Republic

> Received June 14, 1994 Accepted September 11, 1994

Based on recently developed hydration analysis of solubility isotherms, a method for calculating activity coefficients of solute in ternary saturated solution is suggested. The method needs no adjustable parameters; it takes only solubility data and the value of the activity coefficient of the respective solute in its binary saturated solution under identical conditions as starting point. In the NaCl–KCl–H₂O model system, a comparison between the calculated activity coefficients and those obtained by de Lima and Pitzer from solution properties and from the solubility shows a good agreement over a wide temperature range.

As a part of the investigation of mutual connection between the shape of solubility isotherms and ionic processes in saturated ternary solutions, a computational treatment of solubility data called hydration analysis was developed¹. During this analysis, solubility curves of the components (i.e. the branches of the solubility curve which begin with the solubility of the component) have been analyzed in systems consisting of water and two salts having a common ion. In each point of such solubility curve, the total amount of water present in the saturated solution has been splitted computationally in two terms: one of them refers to the water which preserved the properties of the water which changed its properties under the influence of the component added. Then a parameter P defined as mole fraction of water that has changed its properties if compared with the binary saturated solution is calculated in each point of the solubility curve. The dependence of the parameter P and related quantities on the amount of the non-saturating component serves as a source of information on ionic properties in the solution under consideration^{1,2}.

From the very definition of the approach, close relation between the hydration analysis parameter and activity coefficients is obvious. The aim of this paper is to express the relation analytically and compare the calculated activity coefficients with the literature data.

EQUATIONS

We are discussing ternary systems consisting of two salts having a common ion and water, i.e. $M_pX_q-M'_{p'}X_q-H_2O$. For convenience we shall assume p = q = p' = q' = 1. We consider a binary system MX–H₂O with molality of the saturated solution m_0 (w_0 mass %) and ternary solution saturated with the same solute in the system MX–H₂O with molalities of the respective salts m_{MX} (w_{MX} mass %) and $m_{M'X}$ ($w_{M'X}$ mass %).

In hydration analysis, the amount of water which preserved in ternary solution the properties of the water in binary saturated solution of MX (the effective water w_{eff}) is calculated so that

$$m_0^2 = m_{\rm MX} \left(m_{\rm MX} + m_{\rm M'X} \right) \quad . \tag{1}$$

This may be done by expressing the molalities via mass %:

$$\left(\frac{1\ 000w_0}{(M_r)_{\rm MX}\ (w_w)_0}\right)^2 = \frac{1\ 000w_{\rm MX}}{(M_r)_{\rm MX}w_{\rm eff}}\ \frac{1\ 000}{w_{\rm eff}}\left(\frac{w_{\rm MX}}{(M_r)_{\rm MX}} + \frac{w_{\rm M'X}}{(M_r)_{\rm M'X}}\right),\tag{2}$$

where $(w_w)_0$ is the concentration of water (in mass %) in the binary saturated solution serving as our reference point. From Eq. (2),

$$w_{\rm eff} = \frac{(w_{\rm w})_0 (M_{\rm r})_{\rm MX}}{w_0} \left[n_{\rm MX} \left(n_{\rm MX} + n_{\rm M'X} \right) \right]^{1/2} \quad , \tag{3}$$

where $n_i = w_i / (M_r)_i$ is the amount of substance of the component *i* in 100 g of the saturated solution.

According to the definition of the parameter P

$$P = \frac{w_{\rm H_2O} - w_{\rm eff}}{(M_{\rm r})_{\rm H_2O} (n_{\rm H_2O} + n_{\rm MX} + n_{\rm M'X})} , \qquad (4)$$

where $w_{\text{H}_2\text{O}} = 100 - w_{\text{MX}} - w_{\text{M'X}}$ answers to the concentration of water in ternary saturated solution under consideration (in mass %).

Forgetting the hydration analysis and Eqs (1) to (4) for a moment and using the usual description of the respective equilibrium with the aid of activity coefficients

$$\gamma_0^2 m_0^2 = \gamma_{\pm}^2 \left(m_{\rm MX} + m_{\rm M'X} \right) m_{\rm MX} \quad . \tag{5}$$

Therefore

$$\frac{\gamma_{\pm}}{\gamma_0} = \left[\frac{m_0^2}{(m_{\rm MX} + m_{\rm M'X}) m_{\rm MX}} \right]^{\gamma_2} \quad . \tag{6}$$

Again, expressing molalities via mass % helps to find the relation to water concentrations:

$$\frac{\gamma_{\pm}}{\gamma_0} = \frac{w_{\rm H_2O}}{(w_w)_0} \frac{w_0}{[n_{\rm MX} (n_{\rm MX} + n_{\rm M'X})]^{1/2} (M_{\rm r})_{\rm MX}}$$
(7)

This thermodynamical treatment of the problem may be put into relation with the hydration analysis by substituting Eq. (3) into (7) which gives

$$\frac{\gamma_{\pm}}{\gamma_0} = \frac{w_{\rm H_2O}}{w_{\rm eff}} \quad . \tag{8}$$

Therefore

$$w_{\rm eff} = w_{\rm H_2O} \frac{\gamma_0}{\gamma_{\pm}} \tag{9}$$

and

$$P = \frac{w_{\rm H_2O}}{(M_{\rm r})_{\rm H_2O} (n_{\rm H_2O} + n_{\rm MX} + n_{\rm M'X})} \left(1 - \frac{\gamma_0}{\gamma_{\pm}}\right) = x_{\rm H_2O} \left(1 - \frac{\gamma_0}{\gamma_{\pm}}\right) , \qquad (10)$$

where x_{H_2O} is the mole fraction of water in the ternary saturated solution under consideration.

RESULTS AND DISCUSSION

In the NaCl–KCl–H₂O system at 20 – 190.6 °C, solubility curves measured by Cornec and Krombach³ were treated by the above procedure taking the γ_0 values for NaCl and KCl from refs^{4,5}, respectively. Tables I to III give the results comparing the calculated activity coefficients with those reported by de Lima and Pitzer⁵ based on solution properties and solubility for the same set of experimental data.

Considering Tables I – III we note that the agreement between the activity coefficients of de Lima and Pitzer⁵ and those calculated in this paper is in general good. Therefore, in the system where the hydration analysis was performed, activity coeffi-

Eysseltova:

cient of the solute in ternary saturated solutions may be calculated simply according to the Eq. (10) provided the activity coefficient of the respective component in its binary saturated solution under identical conditions is known. Moreover, the established connection between the hydration analysis, the idea of which is yielding structural information on saturated solutions and activity coefficients as thermodynamical values may be stated both surprising and perspective.

TABLE I

Activity coefficients, γ_{\pm} , of NaCl in saturated aqueous mixture NaCl + KCl^{*a*}; *t* is temperature; m_i is molality of the component *i*

t, °C	m _{NaCl}	m _{KCl}	γ_{\pm}			
			solution ⁵	solubility ⁵	this paper	
20	5.50 ₈	1.330	1.013	0.995	0.991	
20	5.81 ₆	0.659_{0}	1.004	0.995	0.991	
40	5.409	1.73 ₃	1.039	1.025	1.021	
40	5.801	0.870_{0}	1.030	1.024	1.015	
60	5.33 ₈	2.168	1.025	1.016	1.008	
60	5.82 ₃	1.089	1.017	1.014	1.003	
80	5.20 ₃	2.871	0.983	0.978	0.976	
80	5.82 ₈	1.43 ₃	0.977	0.974	0.961	
100	4.94 ₀	4.086	0.920	0.917	0.911	
100	4.79 ₁	4.024	0.909	0.942	0.910	
120	5.34 ₆	3.680	0.839	0.837	0.832	
120	6.05 ₅	1.902	0.842	0.838	0.832	
140	5.472	4.171	0.760	0.753	0.745	
140	6.26 ₆	2.031	0.696	0.706	0.751	
169.5	5.55 ₆	5.421	0.605	0.610	0.617	
169.5	6.244	3.291	0.624	0.618	0.627	
169.5	6.78 ₅	1.78_{0}	0.633	0.625	0.634	
189.6	5.77 ₆	6.16 ₆	0.505	0.513	0.507	
189.6	6.31 ₆	4.129	0.528	0.525	0.518	
189.6	6.98 ₇	2.071	0.544	0.536	0.528	

^a NaCl is present as the equilibrium solid phase.

TABLE II

Activity coefficients, γ_{\pm} , of KCl in saturated aqueous mixture NaCl + KCl^{*a*}; *t* is temperature; m_i is molality of the component *i*

t, °C	m _{NaCl}	m _{KCl}	γ_{\pm}			
			solution ⁵	solubility ⁵	this paper	
20	1.721	3.571	0.613	0.620	0.615	
20	3.45 ₅	2.68 ₈	0.659	0.663	0.658	
20	4.305	2.341	0.668	0.683	0.678	
40	1.748	4.277	0.654	0.659	0.656	
40	3.48 ₆	3.31 ₈	0.701	0.704	0.700	
60	1.737	4.961	0.671	0.677	0.674	
60	3.469	3.98 ₀	0.713	0.717	0.714	
80	1.77_{1}	5.63 ₉	0.668	0.672	0.670	
80	3.494	4.64 ₆	0.703	0.706	0.704	
100	1.74_4	6.319	0.647	0.651	0.650	
100	3.47 ₈	5.34 ₅	0.672	0.676	0.676	
120	1.737	7.042	0.611	0.611	0.611	
120	3.469	6.067	0.627	0.632	0.631	
140	1.777	7.774	0.565	0.560	0.565	
140	3.47 ₃	6.82 ₀	0.572	0.576	0.581	
169.5	1.783	8.787	0.483	0.478	0.494	
169.5	3.51 ₅	7.97 ₇	0.479	0.481	0.497	
169.5	4.53 ₇	7.52_4	0.473	0.484	0.500	
189.6	1.768	9.60 ₅	0.421	0.413	0.434	
189.6	3.461	8.851	0.425	0.414	0.436	
189.6	4.405	9.96 ₅	0.404	0.416	0.436	

^a KCl is present as the equilibrium solid phase.

2356

TABLE III

Activity coefficients, γ_{\pm} , of NaCl and KCl in saturated aqueous mixture NaCl + KCl^{*a*}; *t* is temperature; m_i is molality of the component *i*

t, °C	<i>m</i>	m		γ_{\pm}		γ_{\pm}		
	MNaCl	^m KCl	b	С	d	b	С	d
20	5.067	2.060	1.007	1.016	1.031	0.737	0.704	0.729
40	5.00_{8}	2.627	1.048	1.030	1.021	0.752	0.747	0.743
60	4.862	3.29 ₈	1.036	1.021	1.013	0.751	0.752	0.749
80	4.74 ₉	4.027	0.991	0.981	0.980	0.729	0.730	0.728
100	4.70_{8}	4.734	0.922	0.918	0.913	0.685	0.697	0.694
120	4.70_{8}	5.469	0.835	0.840	0.835	0.637	0.644	0.644
140	4.82_{2}	6.182	0.738	0.746	0.744	0.574	0.585	0.591
169.5	5.04 ₈	7.31 ₃	0.582	0.603	0.612	0.470	0.485	0.501
189.5	5.381	8.19 ₇	0.473	0.499	0.492	0.393	0.409	0.430

^{*a*} Both electrolytes are present as the equilibrium solid phase. ^{*b*} Solution data, ref.⁵. ^{*c*} Solubility, ref.⁵. ^{*d*} This paper.

The author is deeply indebted to Prof. J. W. Lorimer of the University of Western Ontario, Canada, for inspiring discussion and valuable remarks.

REFERENCES

- 1. Eysseltova J.: Collect. Czech. Chem. Commun. 59, 126 (1994).
- 2. Nyvlt J., Eysseltova J.: Collect. Czech. Chem. Commun. 59, 1911 (1994).
- 3. Cornec E., Krombach H.: Ann. Chim. 18, 5 (1932).
- 4. Silvester L. F., Pitzer K. S.: J. Phys. Chem. 81, 1822 (1977).
- 5. de Lima M. C. P., Pitzer K. S.: J. Solution Chem. 12, 187 (1983).

Translated by the author.